

Program Assessment Plan

Program: Engineering Physics BS Department: Physics College/School: Parks Date: December 22, 2017 Primary Assessment Contact: William D. Thacker

Note: Each cell in the table below will expand as needed to accommodate your responses.

#	 Program Learning Outcomes What do the program faculty expect all students to know, or be able to do, as a result of completing this program? Note: These should be measurable, and manageable in number (typically 4-6 are sufficient). 	Assessment Mapping From what specific courses (or other educational/professional experiences) will artifacts of student learning be analyzed to demonstrate achievement of the outcome? Include courses taught at the Madrid campus and/or online as applicable.	 Assessment Methods What specific artifacts of student learning will be analyzed? How, and by whom, will they be analyzed? Note: the majority should provide direct, rather than indirect, evidence of achievement. Please note if a rubric is used and, if so, include it as an appendix to this plan. 	Use of Assessment Data How and when will analyzed data be used by faculty to make changes in pedagogy, curriculum design, and/or assessment work? How and when will the program evaluate the impact of assessment- informed changes made in previous years?
а	An ability to apply knowledge of mathematics, science, and engineering.	Classical Mechanics I & II, Quantum Mechanics I&II, Electricity and Magnetism I&II, Optics, Thermodynamics and Statistical Mechanics ; research	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.
b	An ability to design and conduct experiments and analyze and interpret data.	Modern Physics Lab, Optics Lab, Analog and Digital Electronics, Nanoscience Frontiers, Experimental Physics	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.
С	An ability to design a system, component, or process to meet desired needs within realistic constraints such	Modern Physics Lab, Analog and Digital Electronics, Optics Lab, Nanoscience Frontiers, Experimental Physics, and	Student performance on specific assignments in listed courses assessed by course instructor according outcome-	In annual department meetings assessment results at individual level and in aggregate, corrective action for

	as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.	Senior Design	specific rubric listed below.	weaknesses in student attainment, and impact of previous corrective actions are discussed.
d	An ability to function on multi- disciplinary teams.	Group projects in Modern Physics Lab, Analog and Digital Electronics, Optics Lab, Nanoscience Frontiers, Experimental Physics	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.
e	An ability to identify, formulate, and solve engineering problems.	Final papers in Optics Lab, Nanoscience Frontiers, and Senior Design	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.
f	An understanding of professional and ethical responsibility.	Final papers in Optics Lab and Nanoscience Frontiers Students learned about professional and ethical considerations such as proper citations and acknowledgement Analog and Digital Electronics Students viewed a video about government surveillance, had a discussion about the social implications of their future careers as engineers and scientists, and wrote a paper on this subject	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.
g	An ability to communicate effectively.	Paper and oral presentation with questions and answers, Optics Lab, Modern Physics, and Nanoscience Frontiers Write a two page executive summary of selected course material not covered in lecture, Optics, Optics Lab, Modern Physics, and Nanoscience Frontiers	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.

h	The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and social context.	Final Papers and Oral Presentation guidelines ask students to include technological, economic and societal aspects of their study and give examples of how the technology can benefit society, oral presentation Nanoscience Frontiers and Optics Lab.	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.
i	A recognition of the need for, and an ability to engage in life-long learning.	Paper and oral presentation, Modern Physics, Optics Lab, Nanoscience Frontiers	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.
j	A knowledge of contemporary issues.	Paper and oral presentation, Modern Physics, Optics Lab, Nanoscience Frontiers	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.
k	An ability to use techniques, skills, and modern engineering tools necessary for engineering practice.	Modern Physics Lab, Optics Lab, Analog and Digital Electronics, Nanoscience Frontiers, and Experimental Physics	Student performance on specific assignments in listed courses assessed by course instructor according to outcome-specific rubric listed below.	In annual department meetings assessment results at individual level and in aggregate, corrective action for weaknesses in student attainment, and impact of previous corrective actions are discussed.

Additional Questions

1. On what schedule/cycle will faculty assess each of the above-noted program learning outcomes? (It is <u>not recommended</u> to try to assess every outcome every year.)

Each year learning outcomes are assessed for every student in the program at the level of sophomore and above. Due to the limited number of students in the program, not every outcome is assessed every year.

2. Describe how, and the extent to which, program faculty contributed to the development of this plan.

The program faculty collectively developed the outcome-specific rubrics.

3. On what schedule/cycle will faculty review and, if needed, modify this assessment plan?

Faculty will review annually and, if needed, modify the assessment plan.

IMPORTANT: Please remember to submit any assessment rubrics (as noted above) along with this report.

Engineering Physics Assessment Rubrics

0 0 0 0				
Outcome\Level of	1.Below	2. Progressing to	3. Meets	4. Exceeds
Attainment	Expectations	Expectations	Expectations	Expectations
a) an ability to	Not able to apply	Can apply this	Can apply this	Can apply this
apply knowledge	knowledge of	knowledge to	knowledge to	knowledge to
of mathematics,	mathematics,	simple problems	problems of	problems
science, and	science, and	with guidance.	increasing	beyond the
engineering.	engineering.		complexity	classroom
b)an ability to	Not able to	Can conduct	Can design and	Can design
design and	conduct	experiments and	conduct	and conduct
conduct	experiments or	analyze data with	experiments and	experiments
experiments, as	analyze data	direction	analyze data with	and analyze
well as to analyze			minimal direction	data
and interpret				independently.
data.				Demonstrates
				innovative
				thinking.
c) an ability to	Not able to place	Able to design	Able to design	Able to design
design a system,	engineering	engineering	engineering	innovative
component, or	problems in	solutions but not	solutions within	solutions
process to meet	broader societal	always within	realistic	within
desired needs	contexts	realistic	constraints to	constraints to
within realistic		constraints.	meet desired	meet a variety

constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.			needs.	of needs.
d) an ability to	Does not work	Contributes	Participates	Works
function on multi-	well in groups	minimally to the	actively in	productively in
disciplinary		efforts of a group	various aspects	groups, and
teams.			of group work	inspires others
e) an ability to identify, formulate, and solve engineering problems.	Not able to identify, formulate, or solve engineering problems	Able to perform these tasks with guidance.	Able to identify, formulate, and solve a variety engineering problems with minimal guidance	Able to identify, formulate, and solve complex engineering problems and demonstrate originality
f) an	Unable to relate	Rudimentary	Incorporates	Demonstrates
understanding of	ethical concepts	understanding of	ethical concepts	an exceptional
professional and	to professional	basic ethical	into various	grasp of
ethical	responsibility	concepts	aspects of her/his	ethical aspects
responsibility.			WORK.	of the
g) an ability to	Unable cogently	Able to express	Able to express	Able to
communicate	to express ideas	simple ideas with	complex ideas	express
effectively.	orally and in	some clarity	with clarity	complex ideas
	writing			with clarity
				and make
				connections
				among related
				ideas
h) the broad	Not able to	Able to	Able to grasp	Has a broad

education necessary to understand the impact of engineering solutions in a global, economic, environmental, and social context.	understand contemporary, engineering, scientific, and technological issues in a global context.	understand such issues at a basic level.	such issues with some sophistication.	knowledge of current issues and synthesizes diverse ideas persuasively.
 i) a recognition of the need for, and an ability to engage in life-long learning. 	Shows no interest in continued learning	Shows minimal interest in continued education	Very interested in continuing to learn	Has an insatiable thirst for new knowledge
j) a knowledge of contemporary issues.	Not able to discuss contemporary scientific and technological issues in context.	Able to discuss such issues with guidance.	Able to discuss such issues on his/ her own clearly and concisely.	Has a broad knowledge of current issues and conveys ideas clearly and concisely.
 k) an ability to use techniques, skills, and modern engineering tools necessary for engineering practice 	Not able to use techniques, skills, and tools of modern engineering.	Can apply these capabilities to simple problems with guidance.	Can apply these capabilities to problems of increasing complexity.	Can apply these capabilities to complex problems and real-world situations

Example Assignments for Outcomes Assessment

Outcome (a): Design and build a digital counter with digital display, this assignment uses digital logic (mathematics), integrated circuits (science) and their connection to device function (engineering), PHYS 351 Analog and Digital Electronics.

Derive standing wave modes with a variety of boundary conditions; derive population inversion ratio of a multistate laser, PHYS 331 Optics. Calculate the voltage output of a fuel cell or battery, PHYS 341 Thermodynamics and Statistical Mechanics.

Outcome (b): Design and conduct an experiment to calibrate an optical microscope. Design and test a nanoprobe for patterning of nanomaterials.

Design a circuit that can drive a stepper meter using transistors. Design a low voltage probe and demonstrate magnetic memory read and write.

Outcome (c): Design a system to measure the heat capacity of various gasses, discuss the connection of this experiment with the greenhouse effect and climate change PHYS 351 Analog and Digital Electronics

Design and build a solar powered water purification system that uses materials that could be found in the trash (plastic bottles, aluminum foil, and aluminum cans, PHYS 332 Optics Lab

Outcome (d): Instructor observation of teams that may include students from more than one discipline. Students work in teams of two or more, often paired by different disciplines. Optics Lab , Analog and Digital Electronics. Students work in class editing each other's Draft 1 of the course paper. Students provide comments on each other's draft papers, PHYS 493 Nanoscience Frontiers.

Outcome (e): Design an optical system from a set of technical requirements with regard to performance and limits. Calibrate an optical microscope and verify the accuracy of measurements Optics Lab.

Outcome (f): Students viewed a video about government surveillance, had a discussion about the social implications of their future careers as engineers and scientists, and wrote a paper on this subject. Final papers in Optics Lab and Nanoscience Frontiers: students learned about professional and ethical considerations such as proper citations and acknowledgement.

Outcome (g): Paper and oral presentation with questions and answers, Optics Lab and Nanoscience Frontiers Write a two page executive summary of selected course material not covered in lecture, Optics.

Outcome (h): Final Papers and Oral Presentation guidelines ask students to include technological, economic and societal aspects of their study and give examples of how the technology can benefit society, oral presentation Nanoscience Frontiers and Optics Lab.

Outcome (i): Paper and oral presentation Analog and Digital Electronics, Optics Lab, Modern Physics, and Nanoscience Frontiers.

Outcome (j): Paper and oral presentation Analog and Digital Electronics, Optics Lab, Modern Physics, and Nanoscience Frontiers.

Outcome (k): Programming modern electronics embedded systems, Modern Physics Lab. Programming modern electronics embedded systems and LabView, Experimental Physics. Using Matlab and Maple to numerically solve problems that arise during reverse engineering Optics Lab. Utilizing a programming language or environment to numerically solve for the energy levels and plot the wave functions of a particle in a finite square potential well, Quantum Mechanics.