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Abstract

Generalizing the group interaction model of Lee (2007), we identify and estimate the effects of student-
level social spillovers on standardized test performance in New York City (NYC) elementary schools.
We leverage student demographic data to construct within-classroom social networks based on shared
student characteristics, such as a gender or ethnicity. Rather than aggregate shared characteristics into a
single network matrix, we specify additively separate network matrices for each shared characteristic and
estimate city-wide peer effects for each one. Conditional on being in the same classroom, we find that the
most important student peer effects are shared ethnicity, gender, and primary language spoken at home.
We show that altering classroom composition changes the impact of these networks. Particularly, low
ethnic diversity is correlated with low impact for shared ethnicity. We discuss identification of the model
and its implications for within- and between-group test performance gaps along several demographic
traits.
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1 Introduction

Birds of a feather flock together. This concept is called homophily, and we see its effects in schools,

work, and social circles - both personally and in popular culture. The effects of homophily can be

quite stark. For example, compared to their male counterparts, female investors are three times

as likely to invest in companies with a female CEO.1 Homophily may arise if external similari-

ties correlate with shared cultural experiences, making potential relationships less costly through

improved information flows and efficient communication.2 On the other hand, homophily could

simply be the result of taste, which may correlate with prejudice or fear of the other.3 This pa-

per asks two questions related to homophily in elementary school classroom in New York City.

First, which demographic characteristics (if any) are important for social spillovers in standardized

test performance, and how do they compare in sign and magnitude? For example, is shared gen-

der more influential than shared neighborhood of residence? Second, what are the effects of such

homophily-induced spillovers on the distribution of student academic performance within and be-

tween demographic groups? Specifically, how do these spillovers affect existing achievement gaps

within the classroom?

Understanding how homophily works, and which networks are important in which contexts, is

important for education policymakers wishing to harness peer effects (or, at least, to better under-

stand them). The promise of peer effects is twofold: a near costless improvement to educational

outcomes through optimal assignment of students to classrooms and a “social multiplier effect”

for exogenous policy interventions and investments.4 A major challenge to policy intervention is

that students sort into groups within the classroom, and this sorting behavior may bring unintended

consequences when combined with an intervention.5 This paper sheds light on this complication,
1Abramson et al. (2019) discusses gender diversity in venture capital, and its implications.
2See Hegde and Tumlinson (2014) for a model of this in venture capital firms. They discuss how ethnic homophily

plays into both selection of which companies to invest in, as well as influence after investment.
3See Leszczensky and Pink (2019) for a discussion of how different taste preferences for homophily (high and low

identifiers) interact to form groups of varying levels of homogeneity.
4Bennett and Bergman (2018) provide a nice example of social multipliers in action using an attendance interven-

tion. A good survey of the related theory can be found in Epple and Romano (2011).
5See Carrell et al. (2013) for an example. The authors conducted an experiment in which they manipulated peer

groups such that it was expected to help the lowest performing students. The target group of students ended up being
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by identifying and empirically testing for characteristics which are important for within-classroom

spillovers and then by exploring how these effects change under differing classroom compositions.

We develop a spatial autoregressive econometric model to estimate and determine which shared

characteristics are most influential for academic (test score) spillovers and apply it to NYC elemen-

tary school classrooms. To fix ideas, the “student” is the level of observation, and the universe

of students is partitioned into “classrooms.” Within each classroom, students may be partitioned

in different ways based on K = 7 “demographic partitions:” by gender, ethnicity, neighborhood,

bus stop, bus route, language spoken at home, and country of birth. Within each “demographic

partition” students are divided into “demographic groups” corresponding to the possible categories

within each partition, and these groups form the basis of seven homophily networks within each

classroom. For example, in any classroom there may be two gender groups (boys and girls) and

four ethnicity groups (Black, White, Hispanic, and Asian/Other). We leverage variability in the

size and composition of demographic groups in each classroom to identify peer effects through

each demographic partition.6 That is, we simultaneous identify and estimate a gender peer effect,

an ethnicity peer effect, a neighborhood peer effect, etc. for elementary school students in NYC.

We later partition the data into the five boroughs (The Bronx, Brooklyn, Manhattan, Queens and

Staten Island) and re-estimate these seven peer effects at the borough level. Our group interaction

model is a multi-network version of the group interaction model of Lee (2007), and identification

and asymptotic arguments follow similarly.

Empirically, our model finds the strongest networks are shared ethnicity, gender, and primary

language spoken at home. Ethnicity groups are most important for mathematics test scores, and

gender groups are most important for reading test scores. To our knowledge, this is the first paper

to explore bus spillovers in the classroom, but we do not find them to be an important factor in

classroom performance. In general, peer effects based on homophily appear to be stronger in

mathematics than reading test scores. We explore different classroom compositions to understand

hurt by the experiment because the way peer groups formed changed when the set of potential peers changed.
6For clarity of exposition, we refer to all partitions as “demographic partitions,” despite a few of them being based

on geography.
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how network influence of demographic partitions change when peer group composition varies. We

provide evidence that low ethnic diversity leads to lower relevance for the ethnicity network.

In our model, group interaction along multiple demographic partitions produces very general

and interesting reduced-form dynamics compared to existing models. First, positive within-group

interaction may decrease existing within-classroom performance gaps between students belonging

to the same groups (i.e. boy or girl peer groups) by lifting low performing students more than high

performing students. This is a well-known effect of social interactions, and is a common feature

of these models. A second and unique feature of our group interaction model is that peer effects

may increase gaps between students in different demographic groups by limiting direct classroom

spillovers across group boundaries. That is, when boys interact more with boys, and girls with girls,

spillovers are stronger within demographic groups than between them - potentially exacerbating

any existing gender performance gap. This is an important implication of our model: classroom

exposure to other demographic groups is important, but facilitating cross-group interaction may be

equally important to close cross-group performance gaps.

To further motivate our model, the next section is a brief literature review of social networks in

education. Section 3 details the data used in this paper and how we construct our sample. Section

4 introduces the model and discusses identification and estimation. Section 5 presents the main

empirical results, and Section 6 explores how these effects change as the classroom composition

varies. In particular, we explore how the ethnicity network’s impact changes as classroom diversity

varies. Section 7 concludes. In appendices, we conduct simulations to examine the finite sample

performance of our proposed model using datasets simulated from the empirical moments of the

NYC school data, and perform some robustness checks including alternative specifications.

2 Social Networks in Education

Despite their potential importance, econometric estimation of peer effects in education remains

difficult for a number of reasons. The primary challenge in any peer effect analysis is that the
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‘true’ network is almost never observed, and can only be approximated.7 Empirical specification

of networks involves determining the shape of the network (who is connected to whom?) and the

strength of the network (the magnitude of the individual connections within the network). Neither

of these empirical choices is trivial, which may explain the varied results in the literature.8

Previous work uses a variety of sources to construct peer networks: college roommate (Sacer-

dote, 2001), classroom seating assignments (Hong and Lee, 2017), squadrons in the US Air Force

Academy (Carrell et al., 2009; Carrell et al., 2013), number of shared college classrooms (De

Giorgi et al., 2010), student lunch lines (Presler, 2020) among others. However, these approaches

use variation unique to specific situations that is not readily generalized.

A reasonable alternative to the aforementioned approaches is using shared student characteris-

tics (homophily) as a proxy for the network. Race and gender are the most common shared char-

acteristics we see used (Arcidiacono and Nicholson, 2005, Renna et al., 2008, Lavy et al., 2012,

Hsieh and Lin, 2017, Ananat et al., 2018, Billings et al., 2019), but other characteristics such as im-

migration status (Damm, 2014) also have been considered. Our paper follows this line of research

but considers a broader set of homophilous factors simultaneously in explaining peer effects among

elementary school students. Specifically, we examine the relative importance of within-classroom

networks based on shared neighborhood of residence, bus route, bus stop, native language, country

of birth, gender, and ethnicity.9

Peer networks constructed from demographic data are often strictly exogenous and likely to

be constant over time - two features that may simplify peer effect estimation. Moreover, school

administrators are usually in possession of demographic data, avoiding the need to conduct costly
7An exception may be production networks where worker interactions may be observed. See Horrace et al. (2016)

and Horrace et al. (2020) for examples.
8The survey of the empirical effects in Sacerdote (2001) highlights this variety. More recently, the survey Paloyo

(2020) confirms that this is still true, although we have progressed in our understanding of these effects - particularly
in the difficulty entailed in implementing policy based on peer group manipulation.

9An implicit assumption in our model is that peer effects occur only in the classroom. This assumption is not
uncommon in the literature (e.g. Fruehwirth, 2013), and in our context of elementary education, it may be reasonable
to assume the interactions beyond the classroom don’t create academic spillovers in appreciable ways. Burke and Sass
(2013) show that classroom peers are much more influential than cohort-level peers. This is intuitive, as we should
expect classmates who have opportunities to interact during the entire school day to be much more influential on one
another than schoolmates with minimal opportunities for interaction.
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student friendship surveys like the “Add Health” data (Patacchini et al., 2017), or to mine social

media data like Facebook to understand how students sort into friendships (Mayer and Puller,

2008).

3 Data and Sample

This paper uses proprietary student-level longitudinal administrative data on student academic per-

formance, socio-demographic characteristics, school and classroom codes, and program participa-

tion, which we link to student bus route and bus stop assignment data.

Student-level demographic data comes from the New York City Department of Education (NY-

CDOE). These data include socio-demographic characteristics such as gender, race, age, grade,

residential neighborhood, country of birth, primary language spoken at home, an indicator of eli-

gibility for free or reduced-price lunch, and an indicator of full-time special education. Data also

include class assignment as well as both current year and lagged mathematics and reading test

scores. We compile this data for academic years 2013-2015.

Transportation assignment data are provided by the NYCDOE Office of Pupil Transportation

(OPT). Data include whether a student is assigned a bus, bus route number, bus stop location

(latitude and longitude), and bus pickup time all at the student level.

Our sample consists of students in grades 4-5 in general education classrooms where at least

two students are assigned a bus. Table 1 shows summary statistics for our sample. Notice that

the sample is whiter, less poor, and skewed towards Staten Island than the overall population of

students in NYC public schools. This is primarily due to our interest in bus riders and the higher

bus ridership in Staten Island. What follows is a discussion about our sample and its characteristics.

We exclude students in K-3 because students start taking standardized tests in grade three, and

we include a lagged test score in our model. We focus on elementary students for three reasons.

First, in middle school and beyond, students tend to switch classes as they move between subjects,

but elementary school students typically remain with the same group of students. Second, elemen-
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Table 1: Sample Summary Statistics

Variable Mean Std. Dev. Min Max

Class Size 27.8 3.263 20.0 38.0
Test Scores:

Math Z-Score 0.414 0.941 -3.748 2.932
Reading Z-Score 0.406 0.927 -4.757 3.578
Math Lag Z-Score 0.422 0.924 -5.189 3.838
Reading Lag Z-Score 0.425 0.894 -6.911 5.573

Student Characteristics:
Female 0.505 0.500 0 1
Ever FRPL 0.731 0.444 0 1
Age (months) 120.9 7.746 99.5 163.6
Assigned Bus 0.245 0.430 0 1
Fourth Grade 0.520 0.500 0 1
Fifth Grade 0.480 0.500 0 1

Ethnicity:
Asian/Other 0.237 0.425 0 1
Hispanic 0.250 0.433 0 1
Black 0.164 0.370 0 1
White 0.349 0.477 0 1

Borough:
Manhattan 0.075 0.264 0 1
Bronx 0.115 0.319 0 1
Brooklyn 0.160 0.367 0 1
Queens 0.356 0.479 0 1
Staten Island 0.294 0.455 0 1

Counts:
N Students 55,767 Bus Stops 4,666
Classrooms 2,181 Bus Routes 1,733
Census Tracts 1,967 Zip Codes 182

Mean class size is calculated from the pool of classrooms (2,181) such that a classroom in 2014 is
distinct from a classroom in 2015 (even if the physical location is identical). All other means are
calculated using the pool of 55,767 students.
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tary school students generally do not choose their classes, and so while the assignment method by

which students are placed in a class together is unknown (decided by the principal) class assign-

ment is not a result of students choosing their peers. Finally, bus eligibility in NYC is uncommon

for students beyond grade six (only in limited schools in Staten Island).10 Our sample is restricted

to classrooms with at least two bus riders (they do not have to share a route). Table 1 shows that

bus assignment is approaching 25%, which is much higher than the nearly 10% we see over all

NYC schools. There may be structural differences in schools that serve more than our target grades

(such as K-12 or K-8 schools), so we omit schools serving students above grade five.11 We limit

our analysis to the general education population.12 Because we are concerned that some classrooms

which appear small in our sample may be Integrated Co-Teaching (ICT) classrooms, we remove

students in classrooms of less than 20 students (5.8%).

Demographic information includes the language spoken at home and the country of birth. Most

students report English as the primary language spoken at home (58.9%) and were born in the US

(89%). We construct a list of the most common languages spoken at home and most common

countries of birth and utilize this subset of languages in constructing our networks. Table 2 shows

which languages and countries are most common and the percentage of the sample each group

represents.13

10Students between grades three and six are eligible for subsidized (or free) transportation if they live more than a
mile from school. Whether the bus is offered as a transportation choice is determined by the school principal. Weinstein
et al. (2021) predicts whether a school offers the bus in NYC. They find that the largest predictors of schools offering
the bus are when schools are larger, whiter, and in Staten Island or Queens. This is consistent with how our sample
compares to the NYC population of fourth and fifth graders. Schools that do not offer the bus instead offer metro cards.

11For example, there may be older students who ride the bus with the students in our sample. While our approach
ignores these out-of-class peer effects, having students on the bus whom we do not observe dilutes the chance for
students who ride the same bus to be in the same class. This can be systematically different for portions of the sample,
and if the group of students choosing to attend K-8 schools is different from those attending K-5 schools, we introduce
bias into our peer effect estimates by making the weighing matrix a function of school type (and the differences in
student characteristics that comes with that). We avoid this issue by ignoring schools serving higher than grade five.

12Specifically, we remove full-time special education students, students who attend a fully special education school,
and students who ride a special education bus.

13As we shall see in Section 4, when constructing peer networks based on homophily, we exclude ‘other’ categories.
That is, students in these categories are not connected to one another and are isolated from the network. For example, a
student who speaks French at home does not share a home language connection with a student who speaks Indonesian.
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Table 2: Language and Country of Birth Frequency in Sample

Top Languages Spoken at Home Top Countries of Birth

Percent Percent
Albanian 0.72 Bangladesh 0.68
Arabic 1.19 China 1.13
Bengali 1.58 Dominican Republic 0.52
Chinese (any) 8.44 Ecuador 0.13
English 64.98 Guyana 0.17
Haitian Creole 0.53 Jamaica 0.34
Korean 1.89 Mexico 0.27
Russian 3.44 Pakistan 0.35
Spanish 11.56 Russia 0.22
Urdu 0.97 Trinidad & Tobago 0.04
Other 4.71 USA 91.82

Other 4.33
Total 100 Total 100

Percentages are caclulated based on the sample of 55,767 student-year observations.

4 Empirical Model

4.1 Peer Networks Based on Homophily

This paper constructs peer networks based on the idea that students are drawn to other students

with similar observable demographic characteristics (homophily). A number of papers have stud-

ied homophily, but typically only a few demographic characteristics are considered individually.

Most commonly considered are gender and ethnicity.14 Our empirical model expands on gender

and ethnicity and simultaneously considers a broad set of factors in explaining peer effects among

New York City elementary school students. Specifically, our model simultaneously estimates de-

mographic peer effects for K characteristics (or demographic partitions) of the classroom: shared

neighborhood of residence, bus route, bus stop, native language, country of birth, gender, and eth-

nicity, and explores their relative importance.

In our model, student, i, is the unit of observation and the classroom is the environment in
14Most studies find that peer effects are stronger within gender or racial groups than across them. See Soetevent and

Kooreman (2007), Fruehwirth (2013), Nakajima (2007), Mayer and Puller (2008), Hsieh and Lin (2017), Xu and Fan
(2018), among others.
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which students interact and perform academically. Therefore, social interactions with students in

other classrooms are considered negligible. As such, our model is well-suited for estimating peer

effects in elementary schools, where students rarely leave the “homeroom.” Let the number of

students in each of c = 1, ..., C classrooms be nc, so
PC

c=1 nc = n is the total number of students in

the sample or universe. Suppose there are k = 1, ..., K ways to demographically partition students

in a classroom (i.e., gender, ethnicity, etc.). If student assignment to classrooms is random, it

ensures exogeneity of the partitions to academic outcomes and also that the peer interactions due to

pre-existing peer networks (i.e., the social network from the previous grade and year) are negligible.

In practice, the method of student assignment to classrooms is unknown and may not be random.

To address the issue, we include classroom-by-year fixed effects in our empirical model (later) to

control for any correlated effects among students in a classroom.15

To construct our demographic peer networks, we endow each student i in classroom c with K

scalar, unordered categorical variables, hk,ic 2 {1, 2, ..., r, ..., Rk} for k = 1, ..., K, that are each

selected from one of Rk distinct (non-intersecting) homophily groups to which any student may

only belong to one for each k. The implication is that each student belongs to K groups, and the

total number of groups is
PK

k=1 Rk. For example, if the kth partition is gender, then assuming only

two possible genders (boy and girl), Rk = 2 and hk,ic = 1 may indicate student i is a boy, and

hk,jc = 2 may indicate that student j is a girl. In our empirical analysis, the ethnicity partition

has Rk = 4 homophily groups (Black, White, Hispanic and Asian/other), so in this case hk,ic 2

{1, 2, 3, 4}, and we may ascribe Black students a 1, White students a 2, Hispanic students a 3, and

Asian students a 4. Variability in the the number of groups, Rk, and the size of groups are important

source of variability for parameter identification in our model.

Then, our peer network matrix (before row-normalization) for classroom c and demographic

partition k, W⇤
k,c, is specified as

⇥
W⇤

k,c

⇤
ij
= w

⇤
k,ijc = 1(hk,ic = hk,jc) for i 6= j and zero otherwise16

15We also examine the randomness of classroom assignment for our sample using a series of multinomial logit
analyses, which we report and discuss in Appendix B.1 and which show no systematic patterns in classroom assignment
associated with demographic variables. This is not direct evidence for random assignment, but indicates that classroom
assignment is not a function of the associated demographic partitions.

16Note that we are using ‘exclusive averaging’ where individual students are not their own peers. So, the diagonal
entries of our network matrices are all zero (i.e. zero-diagonal matrices).
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where 1(·) is an indicator function that equals one if the argument is true and zero otherwise.17 Let

Wk,c be the row-normalized version of W⇤
k,c. That is, each row of Wk,c sums to 1, so Wk,cyc

is a vector of mean peer outcomes where yc is an nc ⇥ 1 outcome vector and peer groups are

defined based on k
th partition. Given these K homophilous weighting matrices, one may sum

them to a single, aggregate network such that W⇤
c = W⇤

1,c + ... + W⇤
K,c, row-normalize it, and

estimate a single peer effect on the aggregate network. This is the approach of De Giorgi et al.

(2010) where k indexes different sections of nine courses to which college students are randomly

assigned. This approach implicitly assumes equal weighting for all partitions (i.e., each course is

equally important in creating social connections and enhancing student productivity), and it appears

to be an assumption of convenience.

However, our goal is to determine the relative importance of these partition networks in explain-

ing peer interactions. Therefore, we do not aggregate the networks and consider a more complex

group interaction model such that

yc =
KX

k=1

�kWk,cyc +Xc�+
KX

k=1

Wk,cZc✓k + �c◆nc + uc. (1)

Xc is an nc⇥p matrix of exogenous variables consisting of a matrix of variables Zc that vary within

demographic groups and a matrix of dummy variables Dc generated from the partition variables,

hk,ic for all i and k. That is, Dc consists of
PK

k=1(Rk � 1) columns associated with
PK

k=1 Rk

demographic groups at our disposal. Thus, Xc = [Zc,Dc] and � = [�
0
1,�

0
2]

0 where �1 and �2 are

coefficient vectors on Zc and Dc, respectively. ◆nc is an nc ⇥ 1 vector of ones, and uc is an error

vector satisfying E(uc|Xc, �c, {Wk,c}k=1,...,K) = 0.18

17As an example, consider a classroom c consisting of four students {A,B,C,D} where the gender partition con-
tains two groups: a girl group, {A,D} (say), and a boy group, {B,C} (say). Then,

W⇤
gender,c =

A B C D2

664

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

3

775

A
B
C
D

18There is perfect multicolinearity in the RHS variables if we include the partition dummies, Dc, in the contextual
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Parameter �k and ✓k capture endogenous and exogenous (contextual) peer effects, respectively,

associated with homophily network k, and �c captures correlated effects among students in class-

room c (Manski, 1993). Endogenous peer effects measure the extent to which one’s outcome is

influenced by her peers’ outcomes; exogenous peer effects measure the extent to which one’s out-

come is influenced by her peers’ characteristics; and correlated effects, in our context, may arise

from self-sorting or common environmental factors faced by students in the same classroom (e.g.

teacher quality). All three effects cause correlations in the outcome between students in a class-

room, but only the first two are the result of peer/social interactions.

Endogenous peer effects are of particular interest since these effects produce a social multiplier.

This can be seen from equation (1) where any changes in student i’s outcome affect her peers’

outcomes through the endogenous peer effect term, but the change in her peers’ outcomes affects

her peers’ peers’ outcomes and also i’s outcome again. These feedback and chain effects imply that

the effect of any policy targeting a subpopulation can be socially shared and multiplied if such an

indirect effect exists. However, separately identifying the three effects in the model is challenging

since the endogenous peer effect is some function of the other effects, which can be seen from the

reduced form of equation (1) (see equation (3) in the next section). Therefore, there may be strong

correlations between the terms, which raises an identification issue, termed the reflection problem

in Manski (1993). Various identification conditions/restrictions have been studied in the literature

to separately identify the effects. In the next section we build on existing identification results to

understand how our group interaction model is identified.

4.2 Identification: Variation in Group Sizes and Partition Structures

Our model is a generalization of the group interaction model of Lee (2007), who considers a linear-

in-means model with group fixed effects where individuals interact in groups with equal intensities.

effects term, Zc. A scalar form of equation (1) is given by

yic =
KX

k=1

ncX

j=1,j 6=i

�kwk,ijcyjc + x
0

ic�+
KX

k=1

ncX

j=1,j 6=i

wk,ijcz
0

jc✓k + �c + uic.
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Indeed, Lee’s model is a special case of our model where K = 1 and and Rk = 1. That is, each

class is completely homogeneous in terms of the homophily factor (a single demographic group).

He shows that the model is identified if there is sufficient variations in classroom sizes.

The same identification strategy applies to our generalized group interaction model, but the

model partitions classmates further into multiple demographic groups, which creates much richer

variation in group sizes that helps identification even though the model is more complex, as we

shall see.19 This is practically useful given the fact that schools tend to equally distribute students

into classrooms. Lee (2007) also shows the rate of convergence of the peer effect estimator is

slower when average group size is large relative to the number of groups.20 Our demographic

groups within a classroom are generally small, so our estimates may be more precise than a single

classroom-level estimate, which is another advantage of our approach. In the sequel, following

Lee (2007), asymptotic arguments are for large C, fixed K and nc being bounded away from some

constant (consequently, the sizes of demographic groups within a classroom are bounded).

To understand how our model is identified, we first apply the within transformation to equation

(1) to remove the correlated effects. That is, we premultiply it by Qc = Inc � ◆nc◆
0
nc
/nc where Inc

is the identity matrix of dimension nc such that

Qcyc = Qc

KX

k=1

�kWk,cyc +QcXc�+Qc

KX

k=1

Wk,cZc✓k +Qcuc

=
KX

k=1

�kWk,cQcyc +QcXc�+
KX

k=1

Wk,cQcZc✓k +Qcuc (2)

where the second equality is because Wc is row-normalized and symmetric. Let y⇤
c = Qcyc,

and X⇤
c ,Z

⇤
c , and u⇤

c are similarly defined. Note that the typical element of y⇤
c is yic � ȳc, where

ȳc =
1
nc

Pnc

i=1 yic and the same for X⇤
c ,Z

⇤
c , and u⇤

c . We assume Inc �
PK

k=1 �kWk,c is invertible21

so the model is stable and has an equilibrium. Then, the reduced form of equation (2) can be written
19We show that model identification stems not only from variation in the sizes of demographic groups in each

classroom, but also from variation in how each partition intersects with the other partitions across classrooms.
20This is clear from equation (4) in the sequel.
21Note that a sufficient condition for the invertibility is

PK
k=1 |�k| < 1 since Wk,c are row-normalized.
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as

y⇤
c =

 
Inc �

KX

k=1

�kWk,c

!�1 "
X⇤

c�+
KX

k=1

Wk,cZ
⇤
c✓k + u⇤

c

#

=

0

@Inc +
KX

k=1

�kWk,c +

 
KX

k=1

�kWk,c

!2

+ ...

1

A
"
X⇤

c�+
KX

k=1

Wk,cZ
⇤
c✓k + u⇤

c

#
(3)

In the sequel, let Sc(k, r) = {i : (hk,ic = r)} for k = 1, ..., K, and r = 1, ..., Rk (i.e. the index

set of students in classroom c whose k
th partition variable is r) and nc(k, r) = |Sc(k, r)| where |S|

is the cardinality of a set S (so, nc =
PRk

r=1 nc(k, r)). Remember hk,ic, defined in the previous

section, is the k
th covariate which partitions students in a classroom into Rk groups.

To have a better intuition for equation (3), we first consider the case K = 1. When K = 1, after

some matrix algebra on equation (3), student i’s outcome function (in scalar form) can be written

as

yic � ȳc =
�
zic � z̄(1,h1,ic)

c

�0
 
�1 � ✓

nc(1,h1,ic)�1

1 + �
nc(1,h1,ic)�1

!
+

1

1 + �
nc(1,h1,ic)�1

�
uic � ū

(1,h1,ic)
c

�

| {z }
(⇤)

+
1

1� �

⇥�
d̄(1,h1,ic)
c � d̄c

�
�2 +

�
z̄(1,h1,ic)
c � z̄c

�
(�1 + ✓) +

�
ū
(1,h1,ic)
c � ūc

�⇤

| {z }
(⇤⇤)

(4)

where z̄
(1,h1,ic)
c is the average of zic (the i

th row of Zc) of the demographic group based on the

first (K = 1) demographic partition to which student i belongs. So zic � z̄
(1,h1,ic)
c represents the

difference in attributes between i and her demographic group average, and z̄
(1,h1,ic)
c � z̄c represents

the difference in attribute between her demographic group average and the classroom average. The

equation is essentially the same as that derived in Lee (2007), but ours includes the additional terms

in (**), which appear because Rk > 1 for all k (i.e., because each classroom contains multiple

demographic groups within each demographic partition). Boucher et al. (2014) provide an intuitive

explanation about how the structural parameters in (*), �,�, and ✓, can be identified based on

variation in classroom sizes. For ease of discussion and without loss of generality, let us assume
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for now that all peer effects are positive. Since individuals are excluded from their own peer

groups (i.e. exclusive averaging), individuals with attributes above the average essentially have

a group of peers whose attributes are below average, which implies a perfect negative correlation

between individual attributes and their mean peer attributes. If endogenous and exogenous peer

effects exist, it is clear from equation (1) that such negative correlation reduces the dispersion

in outcomes (over the case where peer effects are zero). However, the degree of the smoothing

is not constant across demographic groups of different sizes. The smoothing effect is larger in

smaller groups since exclusive averaging doesn’t greatly effect peer means when group size is

large. This is seen in equation (4) where the marginal effect of zic � z̄
(1,h1,ic)
c is reduced by ✓

(i.e. exogenous peer effects) linearly and by � (i.e. endogenous peer effects) nonlinearly, and the

reduction decreases as demographic group size, nc(1, r), increases. This implies that, as group

size varies across classrooms, so does the impact of each structural parameter on the outcome in

the model. Thus, these variations can be used to separately identify the parameters. Note that the

variation in group sizes in our model is richer than that in the model of Lee (2007). The sizes of

multiple demographic groups within a classroom vary across classrooms, which allows us to use

the variation in nc(k, r) for k = 1, ..., K and r = 1, ..., Rk, not just nc.22

Another important feature of our model is the additional term (**). Interestingly, the social

effects (� and ✓) in this term no longer reduce the dispersion in outcomes, but amplify it. When

there are disparities in attributes across demographic groups, the social effects exaggerate the gap.

This is intuitive since the social effects work within demographic groups in our model, not across

them. This gives us an important implication that peer interactions may equalize students outcomes

by improving the performance of low ability students more than that of high ability students, but

it may also increase the gap across different peer groups when students interact exclusively within

their peer groups. Therefore, in this setting, if there is a heterogeneous social shock that affects

demographic groups disproportionately (or if there is a pre-existing gap in performance between

22In equation (4), note that dic is a vector of partition dummies, so dic = d̄
(1,h1,ic)
c when K = 1. Equation (4)

implies the coefficients on the dummies can be identified once � is identified.
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groups), peer interaction will exaggerate the gap.23 This suggests that if a gap exists in average

performance for members of different groups within a partition, and students interact within their

group, mere exposure in the classroom to other groups is not be sufficient to close performance

gaps. 24

Unfortunately, when K > 1, it is not possible to obtain a simple reduced form equation anal-

ogous to (4). Instead, we resort a more general identification result from the literature to under-

stand how additional demographic partitions and their distinct demographic groups help identify

the parameters of the model.25 From an instrumental variable perspective, identification of the

within-transformed equation (2) reduces to whether we can find valid instruments for the endoge-

nous regressors {Wk,cy⇤
c}Kk=1. Note from the reduced form equation (3) that Wk,cy⇤

c can be written

as

Wk,cy
⇤
c =

0

@Wk,c +Wk,c

KX

k=1

�kWk,c +Wk,c

 
KX

k=1

�kWk,c

!2

+ ...

1

A
"
X⇤

c�+
KX

k=1

Wk,cZ
⇤
c✓k + u⇤

c

#
(5)

For an instrumental variable approach to work, however, the deterministic parts of {Wk,cy⇤
c}Kk=1,

which simply exclude the error term, u⇤
c , from (5), should not be perfectly collinear with the ex-

ogenous regressors in the model, X⇤
c and {Wk,cZ⇤

c}Kk=1. Otherwise, identifying instruments for the

endogenous terms that satisfy the exogeneity, relevance, and rank conditions don’t exist in the sys-

tem. Therefore, identification of (2) requires the deterministic parts of {Wk,cy⇤
c}Kk=1 to be linearly

independent of X⇤
c and {Wk,cZ⇤

c}Kk=1 for some c. If it is satisfied, the elements of the deterministic

part of Wk,cy⇤
c that are independent of the existing regressors can be used as valid instruments for

them. This is the insight of Bramoullé et al. (2009) and others, and we show below that the con-

dition is in general satisfied in our case if there is sufficient variation in group sizes and partition

structures.

First, observe that Wk,cWl,cZ⇤
c for k, l = 1, ..., K, are elements of the deterministic parts of

23For example, if the current pandemic has disproportionate effects on student outcomes across ethnic groups, peer
interaction within ethnic groups will amplifies the disparity.

24A simple calculation using equation (4) reveals that a group’s unit deviation from its classroom average in academic
performance is increased by �

1�� percent due to peer effects.
25One can easily verify that this identification strategy applies to K = 1 as well.
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{Wk,cy⇤
c}Kk=1, and whose ith element, [Wk,cWl,cZ⇤

c ]i, is given by:

=
1

nc(k, hk,ic)� 1

X

q2Sc(k,hk,ic)
q 6=i

0

BB@
1

nc(l, hl,qc)� 1

X

j2Sc(l,hl,qc)
j 6=q

(zjc � z̄c)

1

CCA

=
1

nc(k, hk,ic)� 1

(
RkX

r=1

0

@nc ([k, hk,ic] \ [l, r])

nc(l, r)� 1

X

j2Sc(l,r)

(zjc � z̄c)

1

A� 1

nc(l, hl,ic)� 1
(zic � z̄c)

� 1

nc(l, hl,ic)� 1

X

j2Sc(l,hl,ic)
j 6=i

(zjc � z̄c)�
X

j2Sc(k,hk,ic)
j 6=i

1

nc(l, hl,jc)� 1
(zjc � z̄c)

)

where nc ([k, s] \ [l, r]) = |Sc(k, s) \ Sc(l, r)| (i.e. the number of students in the intersection

of group s on partition k and group r on partition l. The first equality implies that the term

includes the attributes of student i’s peers’ peers where direct peers are based on the k
th parti-

tion and indirect peers are based on the l
th partition, and the peer sums are divided by (one less

than) the sizes of the demographic groups associated with them. Note that [Z⇤
c ]i = zic � z̄c,

[Wl,cZ⇤
c ]i =

1
nc(l,hl,ic)�1

P
j2Sc(l,hl,ic)

j 6=i

(zjc � z̄c), and [Wk,cZ⇤
c ]i is similarly given. Then, from the

second equality, it is clear that Wk,cWl,cZ⇤
c for k, l = 1, ..., K includes terms similar to Z⇤

c ,Wl,cZ⇤
c ,

and Wk,cZ⇤
c , but they won’t be linearly dependent as long as there is variation in group sizes, i.e.

nc(k, r), and also variation in how each partition intersects with the others, i.e. Sc(k, s)\Sc(l, r).26

Since the deterministic parts of {Wk,cy⇤
c}Kk=1 include Wk,cWl,cZ⇤

c , this ultimately implies that

identification of equation (2) is possible when such variation exists. When the model is identified,

it is clear that Wk,cWl,cZ⇤
c for l = 1, ..., K can be used as identifying instruments for Wk,cy⇤

c .27

The role of variation in demographic group sizes and partition structures in the identification of

the model is intuitive. Consider the case with two partitions, gender and ethnicity. In this example,

assume each partition has two groups (girl and boy and races 1 and 2). If peer effects work through
26Using the second equality, one can show that the terms are perfectly linearly dependent if i) some partitions

completely overlap (e.g. all boys are race 1 and all girls are race 2, so Wgender,c = Wrace,c for all c) or ii) groups sizes
are constant across partitions and classrooms, and also the sizes of the intersections of the groups, nc ([k, s] \ [l, r]),
are constant across s or r.

27One can easily verify that these instruments satisfy the exogeneity, relevance, and rank conditions for valid in-
struments. More formal sufficient identification condition for our model in this regard may be derived using the
identification results for high-order spatial autoregressive models in Lee and Liu (2010).
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both gender and ethnic lines, peer effects within girl and boy groups will first reduce the dispersion

in outcomes within the two gender groups, but increase the gap between the two, as equation (4)

implies. However, peer interaction within groups in the ethnic partition (ethnic groups) may play

against these effects, lessening the gender gap within the ethnic groups but increasing dispersion

in outcomes within gender groups by enlarging racial gap in outcomes there. The size of all of

these smoothing and dispersing effects and how one effect interplays with the others depend on

the sizes of groups and how groups of one partition intersect with groups of the other partitions.

Different multi-dimensional partitions of a classroom result in different distribution of outcomes

within and across groups, which is the primary source of identification for this model. As the

dimension of partitions (K) increases, the number of parameters in the model increases, but they

can be separately identified as long as the discussed variations exist. In Appendix A, we examine

if there are sufficient variations in the sizes of homophily groups and partition structures across

classrooms in the NYC data, and find that the current empirical distributions of the group sizes and

partition structures are sufficient for consistent estimation of peer effects.

A similar identification strategy is considered in De Giorgi et al. (2010), which use the idea of

partially overlapping groups to determine network weights based on how frequently two students

met in a series of classes. The model estimates a single peer effect parameter using an aggregated

network, which basically uses variation in network weights at the individual level as exclusion

restrictions. Our model uses similar variation, since groups of one partition partially overlap groups

of other partitions and this variation serves as a source of identification for the model. However, our

model considers disaggregate networks and simultaneously estimates several different peer effects

working through different types of peer groups.

4.3 Empirical model

There are a few differences between equation (1) and the model that we ultimately estimate. First,

we have a panel of data, so we utilize both cross-sectional and time variations in peer networks

and covariates (i.e. Wk,ct and Xct) to estimate model parameters. This also allows us to add a
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one period lag of the dependent variable, yc,t�1, on the right-hand side of the model to control

for student’s persistent heterogeneity in test scores. Due to the addition of the time dimension,

classroom fixed-effects, �c, are now expanded to classroom by time fixed-effects, �ct.

Second, we have assumed so far that each partition is complete. That is, we have assumed that

for each partition, every student must belong to exactly one demographic group in each partition.

However, there are groups in some partitions that do not facilitate a connection between students.

For example, some students ride the bus while others do not. Those that ride the bus together

may form stronger in-classroom connections. These connections may be the result of friendships

strengthened while traveling on the bus together, or they may reflect homophily based on shared

experiences due to shared geography. Neither of these reasons for increased interaction occur for

students who do not ride the bus. In this case, the weighting matrix for bus ridership may include

a block of zeros for students who do not have connections with other students in this partition

(i.e. those who do not ride the bus are excluded from the bus ridership network). These serve as

additional exclusion restrictions that helps identify the model.

Therefore, our empirical model is:

yct =
KX

k=1

�kWk,ctyct +Xct�+
KX

k=1

Wk,ctZct✓k + yc,t�1� + �ct · ◆nct + uct (6)

where nct is the number of students in classroom c at time t. We include seven homophily peer

networks: shared Gender, shared Ethnicity, shared Language Spoken at Home, shared Country of

Birth, shared Bus Route, shared Bus Stop, and shared Residential Neighborhood (census tract or

zip code). The covariate vector, Xct, includes: a gender dummy (Female), a dummy for ‘free

or reduced price lunch’ (FRPL), Age in months, Age2, a dummy for a bus rider (Bus), three

dummies for race (Asian, Black and White with Hispanic as the baseline group), and dummies

for other indicator variables that are used to construct the weights matrices (e.g. dummies for

language spoken at home, country of birth, etc.). The covariate vector for contextual effects, Zct,

includes FRPL, Age, Age2, and lagged outcome yc,t�1.28

28As discussed before, partition dummies are excluded from Zct to avoid perfect multicollinearity. Since there are
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We estimate the model using a quasi-maximum likelihood method in a similar fashion as Lee

et al. (2010). Estimation details are in Appendix C. The estimation approach requires that the

determinant of Ict �
PK

k=1 �kWk,ct is strictly positive for any c and t in equation (6) to ensure

the log-likelihood function is well defined. When weights matrices are row-normalized (e.g. our

case), the condition is satisfied if
PK

k=1 |�k| < 1. Therefore, we only consider parameter values

satisfying
PK

k=1 |�k| < 1 in our estimation procedure. This ultimately implies that not all peer

effects of different partitions can be large, but only some of them can. As we are mostly interested

in the relative importance of these factors, this does not pose a problem.

When the peer effect estimates are ranked to examine the relative importance of the partitions in

explaining peer interaction, the ranking statistics are not deterministic, but contain uncertainty due

to sampling variability. We apply the method of ‘ranking and selection’ to properly infer the most

important partitions from the ranked estimates. The procedures select a subset of �1, ...,�K that are

statistically larger than the others at a pre-specified error rate, ↵ 2 (0, 0.5), while accounting for the

inherent multiplicity and uncertainty in the ranked estimates, �̂k’s.29 Let �[K] � �[K�1] � ... � �[1]

be the population rankings of peer effects, so �[K] = maxKk=1 �k. The rankings of peer effects

estimates are similarly denoted as �̂(K) � �̂(K�1) � ... � �̂(1), so �̂(K) = maxKk=1 �̂k. Ranking

and selection procedures recognize the uncertainty that the partition that is estimated to have j
th

largest peer effects, (j), may not correspond to the partition that has the j
th largest peer effects in

the population, [j], in general.

To account for such uncertainty, with assuming (asymptotic) normality of the estimates �̂1, ..., �̂K

and general variance-covariance structure, the procedures identify a set of peer effect indices,

⇣ ⇢ {1, 2, ..., K} that satisfies Pr{[K] 2 ⇣} � 1 � ↵ where ↵ = 0.05, typically. In other

words, the procedures estimate the (minimal) set of the population indices that includes the un-

known population index that is associated with the largest parameter value, [K], with probability at

seven homophily weights matrices and four covariates in Zct, twenty eight contextual effects are estimated in our
model. We do not report the contextual effect estimates in our results below to save space (these estimates are available
upon request from the authors).

29See Horrace and Parmeter (2017), who recently apply ranking and selection to economics journal citation counts
to determine a subset of the ‘best’ journals.
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least 1� ↵. If the inference is very sharp, ⇣ may be a singleton, but ⇣ may include all the indices if

the inference is very weak. We employ the procedures to account for multiplicity and uncertainty

in the ranked peer effect estimates when determining the most important homophilous networks in

peer effects among NYC elementary school students.30

5 Main Results

We begin with our results for mathematics and reading scores for fourth and fifth graders in Table

3. The test scores are normalized Z-scores. To save space we do not report the contextual effect

results, only the peer effects (�k, k = 1, ..., 7) and the marginal effects (�) of the covariates (Xct)

in equation (6). Table 3 shows the results for four models. Models (1) and (2) use mathematics test

score as the outcome, and models (3) and (4) use reading test score as the outcome. The first model

for each outcome defines a student’s neighborhood as their zip code of residence (models (1) and

(3)) and the second model for each outcome defines a student’s neighborhood as their census tract

of residence (models (2) and (4)). Notice that this change has very little effect on estimates for

other variables in the model.

Four of the mathematics score peer effects are significant in column (1), with Ethnicity (0.221),

Language (0.096), Gender (0.054), and Neighborhood (0.017) in rank order. Bus Stop, Bus Route,

and Country are not statistically significant.31 In column (2) where we define Neighborhood using

census tract rather than zip code, the estimates are very similar, with a slight increase in the point

estimate for Neighborhood. The four networks that were significant in model (1) remain significant

in model (2), and the insignificant estimates remain insignificant as well.
30The cardinality of ⇣ is increasing in K since the inference needs to make more pairwise comparisons as K in-

creases, which makes it harder to distinguish [K] at a fixed error rate, ↵. This is the concept of ‘multiplicity.’ To
conduct the inference we need critical values drawn from a k-dimensional multivariate normal distribution with co-
variance structure determined by the hessian of the converged log-likelihood. These critical values were all around
2.5, larger than the usual critical value of 1.96 from a univariate normal distribution and, hence, accounting for the
multiplicity.

31We should note that we have not included fixed effects for specific bus stops and bus routes due to computational
constraints, although we have included an indicator for whether students ride the bus. As a result, these estimates may
be biased by correlated effects related to the bus. However, these results are already much weaker than other networks,
and the additional controls are unlikely to significantly increase the influence of these networks.
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Turning to the results for Reading Test Z-Scores, even though the sample selection process is

identical to that for the mathematics scores, there are some notable differences in peer effects across

the two sets of results. First, the mathematics peer effects are typically larger than the reading peer

effects except for Gender (compare 0.054 for mathematics to 0.150 for reading) and Bus Route

(compare statistically significant 0.028 in reading to insignificant 0.008 in mathematics). Second,

the peer effects rankings are about the same for reading and mathematics scores. The biggest

difference is that Gender is ranked third in mathematics (0.054), but is ranked first in reading

(0.150). Additionally, Bus Route is significant in reading (0.028) and ranks before Neighborhood.

Country of birth and Bus Route remain statistically insignificant for both outcomes. Only the

census tract definition of Neighborhood is statistically significant in reading. In both outcomes, the

estimate is larger for the census tract definition of Neighborhood, suggesting that the census tract

is a better representation of an elementary student’s neighborhood peer group.32

The ranked peer effect estimates contain sampling errors, so we examine if the the rankings of

peer effect estimates are statistically significant using the ranking and selection procedures. We

find that only Ethnicity is in the subset of the best in case of mathematics test scores while both

Ethnicity and Gender are in the best set in the case of reading test scores. This is essentially

because the Ethnicity and Gender peer effect estimates are considerably larger than the others, so

they remain in the best category even after accounting for sampling errors.

A few remarks follow: first, the three strongest networks are consistent between both outcomes

(Ethnicity, Language, and Gender). Second, our estimates imply that social effects are larger in

mathematics than in reading.33 This is consistent with the story that students learn language and

reading skills both at home and at school, but mathematics is learned primarily at school. Next,

the primary Language spoken at home is strong for both outcomes, but stronger in mathematics
32While we would like to find the “optimal” neighborhood size, we were unable to push this further with census

blocks, due to computational difficulties with the large number of fixed effects that would entail (we incorporate
over 2,100 census tracts already). We also had concerns of being underpowered with census blocks (there are over
23,000 unique census blocks associated with our sample). The bus networks may substitute as smaller neighborhood
definitions, particularly the Bus Stop network. Our results suggest that this is not a better approximation than census
tract, but this could also be attributed to the sparsity of the bus network.

33See that more networks exhibit larger coefficients in math than in reading, and also the sum of network estimates
is larger in mathematics than in reading.
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than reading. The smaller effect and importance of Language in reading may come from two

mechanisms. The first is that schools teach English specifically, so other language groups may play

diminished roles. The second is the aforementioned idea that students primarily learn mathematics

at school, such that we might expect a smaller coefficient for reading estimates in general. We

explore the primary Language spoken at home and Country of birth networks further in Section B.

Additionally, these results suggest that influential peers are generally those that share obvious

similarities: Ethnicity, Gender, and Language. Interactions outside the classroom, such as shared

Bus Stop, Bus Route, and neighborhood appear less important. A narrower ethnicity group (Coun-

try of birth) appears less important. This could be a result of friendship sorting occurring early

in the year, making characteristics which are immediately obvious to students more important for

friendship formation.

The next panel of Table 3 contains estimates for the marginal effects of our control variables

(Xct). For mathematics, being male is associated with increased scores (borderline significant

0.007), while Free or Reduced-Price Lunch (FRPL) status correlates with lower scores (significant

�0.076). The reference group Hispanic does worse than the other three groups, although Black

is not statistically different. Lag Test Score is the strongest predictor of current-year performance

(0.711). Students who ride the bus do worse than those who do not (-0.021), although this may be

due to selection. Age (measured in months) is also statistically significant, and we include both age

and age-squared in the model. Being older is correlated with better test results, but being too old

(possibly the result of failing a grade) is associated with lower test results.

It is also important to notice the dimensions along which we observe performance gaps. There

are significant performance gaps along both ethnicity and gender, which we observe in the marginal

effects (�). Because these are also important dimensions of the peer interaction as seen in the

peer effects estimates, equation (4) implies that these performance gaps are widened by classroom

peer effects. Recall that endogenous peer effects mitigate performance gaps between high and

low performing students as low performing students are more helped by their higher performing

peers. However, they may increase existing gaps between groups if peer interactions exist within
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the boundaries of groups. Therefore, within ethnicity and gender groups, there may be significant

peer effects, and these effects may exacerbate performance gaps between different gender or ethnic

groups. Using the point estimates from Table 3, our results suggest that any within-classroom

gender test score gap would be increased by 5.71% in mathematics and 17.65% in reading through

the classroom peer effects mechanism. Similarly, the black-white test score gap would increase by

28.37% in mathematics and 17.65% in reading. Nonetheless, these negative impacts are mitigated

in our model if there is enough variation of students within demographic groups as they “move”

across partitions. For example, performance gaps between boys and girl are less affected if there

is sufficient variation of ethnicity among boys and girls (and if there are positive spillovers in

ethnicity).

Table 4: Peer Effects (� from Individual Models)

Mathematics Reading

Ethnicity 0.246 (0.008) 0.128 (0.009)
Language 0.156 (0.008) 0.078 (0.009)
Gender 0.056 (0.013) 0.149 (0.012)
Census Tract 0.026 (0.006) 0.016 (0.006)
Zip Code 0.034 (0.009) 0.014 (0.009)
Bus Stop 0.034 (0.011) 0.030 (0.011)
Bus Route 0.026 (0.010) 0.034 (0.010)
Country 0.038 (0.016) 0.040 (0.017)

Observations 55,598 55,221
Estimates shown are the parameters of interest from the respective single-network models. Models
include classroom fixed effects, four contextual effects, lagged test score, age, age squared, and
fixed effects for gender, poverty, ethnicity, census tract, country of birth, language spoken at home,
and whether student rides the bus. Ethnicity is defined with Hispanic as the reference group.

Table 4 shows peer effects estimates when the model includes only one of our seven ho-

mophilous peer networks. The goal of this exercise is to show stark differences in peer effect

estimates when they are estimated individually.34 Nearly all estimates are larger and statistically

significant, and the rankings of the estimates are quite different than before. This implies the current
34These models include the same contextual effects and marginal effects as in Table 3.
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practice of considering only a few characteristics individually when studying homophily may suffer

from omitted variable bias, and it is indeed important to simultaneously control for all networks to

tease out the individual contribution of each homophilous factor on peer interaction.

6 The Effect of Classroom Composition

To this point, we estimate peer effects for the seven networks of interest given the observed dis-

tribution of students in our sample. The NYC public school system is a large and diverse place

containing five boroughs each with their own characteristics. We split our sample by borough in

order to explore whether our estimates change based on context and by how much. Table 5 report

the results for mathematics and reading respectively when we split our sample by borough. For

both outcomes, the top three effects are consistent with the full sample in most splits, but there is

some significant variation in the estimates that is worth unpacking.

Starting with mathematics, we notice that in all models the Ethnicity network remains the most

important, but point estimates range from 0.136 in the Bronx to 0.285 in Queens. There are likely

two causes to this, both of which are tied to the ethnic composition of the boroughs. The first is that

the relevance of the Ethnicity network may vary between ethnic groups. Second, whether a student

is participating in a large or small network may affect the importance of the network. We can think

of this second mechanism as a question of the level of diversity in a classroom, and we discuss

this mechanism further in Section 6.1. The second and third most important networks are usually

primary Language spoken at home and Gender, although there is more variation than there was in

Ethnicity, and our estimates may be less precise due to smaller samples in these splits. Turning to

the results of each borough, Manhattan is the smallest borough, and only the ethnicity network is

significant for mathematics. In the other boroughs, gender is the second most important network

for Brooklyn and Staten Island, but it is insignificant for Queens and the Bronx. Language is the

second most important network in Queens, and the third most important in the Bronx, Brooklyn,

and Staten Island. The estimate in Queens is large (0.118), over double the estimate for the full
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Table 5: Sample Partitioned by Borough (Mathematics)

Panel A: Mathematics Bronx Brooklyn Manhattan Queens Staten Island

Peer Effects (�k)
Ethnicity 0.136 0.199 0.230 0.285 0.158

(0.021) (0.020) (0.025) (0.012) (0.016)
Language 0.081 0.078 -0.002 0.118 0.060

(0.029) (0.021) (0.035) (0.012) (0.019)
Gender 0.019 0.081 0.019 0.029 0.096

(0.035) (0.032) (0.044) (0.021) (0.023)
Census Tract 0.028 0.010 0.013 0.002 0.049

(0.022) (0.019) (0.022) (0.014) (0.019)
Bus Stop 0.107 0.031 -0.013 0.005 0.020

(0.037) (0.038) (0.049) (0.020) (0.020)
Bus Route 0.025 -0.011 0.047 0.010 -0.003

(0.029) (0.031) (0.044) (0.020) (0.018)
Country -0.013 0.041 0.065 -0.006 0.007

(0.042) (0.034) (0.056) (0.021) (0.040)

Observations (n) 6,385 8,908 4,181 19,794 16,330

Panel B: Reading Bronx Brooklyn Manhattan Queens Staten Island

Peer Effects (�k)
Ethnicity 0.080 0.090 0.120 0.153 0.095

(0.025) (0.022) (0.024) (0.015) (0.017)
Language 0.012 0.060 -0.030 0.071 0.037

(0.034) (0.022) (0.031) (0.013) (0.019)
Gender 0.197 0.107 0.163 0.129 0.171

(0.033) (0.031) (0.035) (0.021) (0.022)
Census Tract 0.025 0.004 0.014 -0.013 0.01989

(0.026) (0.020) (0.020) (0.015) (0.019)
Bus Stop 0.034 0.019 0.024 -0.022 0.028

(0.042) (0.039) (0.046) (0.023) (0.021)
Bus Route 0.044 0.025 0.037 0.043 0.008

(0.036) (0.032) (0.040) (0.022) (0.019)
Country -0.038 -0.036 0.100 0.034 0.069

(0.052) (0.037) (0.052) (0.024) (0.042)

Observations (n) 6,367 8,811 4,177 19,559 16,307
Models include 28 contextual social effects, constructed using the lag test score, age, age squared,
and FRPL status along with each of the seven networks included in the model, as well as neighbor-
hood and classroom fixed effects. Hispanic is the omitted reference group for ethnicity marginal
effects.
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model. Queens is also the only borough in which English is not the primary Language for most

students (48%), although it is still the modal language. In the Bronx, it is notable that the second

most important network is the Bus Stop, and Neighborhood is significant (at least at the 10% level)

for the Bronx, Brooklyn, and Staten Island. These Neighborhood estimates may suggest differences

in the role Neighborhood plays in different boroughs.

For reading, we notice that Gender is the most important network in all but one borough, and

Ethnicity is the second most important network for all but one borough. The exception is Queens in

which Gender and Ethnicity are swapped, but still remain the top two networks. This again reflects

our results in the full model, but there is interesting variation in estimates to note. First, Gender

varies greatly from the Bronx (0.197) to Brooklyn (0.107). With the exception of Brooklyn, we see

a pattern that as the strength of the Ethnicity network increases, the Gender network decreases. This

could suggest that the Ethnicity and Gender networks act as substitutes. A similar pattern occurred

for mathematics as well, further strengthening this possibility. We will look more at this in the next

section, where we dive further into the Ethnicity network. We should also note the results of the

bus networks. For Queens, the Bus Route is the fourth most important network, and it has a sizable

effect (0.043). The Bronx, Brooklyn, and Manhattan all have estimates of similar magnitude, but

the results are noisy and not statistically significant. This may be due to low power, as these are the

smallest boroughs. It is striking that Staten Island has such a low (and insignificant) estimate - even

as bus ridership is most common here. This may indicate other factors around how these networks

operate. In Staten Island, bus routes may be less tied to neighborhood than the rest of NYC, as

the distances buses travel is further in Staten Island than in other boroughs. This may point to the

relevant mechanism not being time spent on the bus, but rather the students who live most nearby -

a micro neighborhood.

6.1 An Exploration of Diversity

In this section, we ask how the effect of the Ethnicity network changes as the classroom becomes

more diverse. For this analysis, we construct a measure of diversity. Notice that there are four
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groups of interest in our Ethnicity network: Hispanic, Black, White, and Asian/other. To deal

with more than two groups, we use Theil’s entropy index (Theil, 1972, White, 1986), which we

normalize such that values fall between zero and one:

hc = �
PK

k=1 pck ln(pck)

ln(K)
(7)

where pck is the proportion of students in classroom c who are members of that ethnicity k. hc is

the normalized entropy index for classroom c, and we will call it the diversity index. The index is

maximized when there is equal representation of all groups (i.e. 8 k, pck = 1
K ), and minimized at

zero when only one group is represented (i.e. 9 k, pck = 1). We calculate this diversity index for

each classroom in our sample, and then split the data based on diversity quantile.

Table 6 shows the results from the subsamples above and below the median diversity index.

In both outcomes we see that the Ethnicity network is more influential in the more diverse envi-

ronment. The difference is substantial. In mathematics, the peer effect drops from 0.233 to 0.192

(percent difference of 19%) and in reading it drops from 0.130 to 0.092 (34%). Table 7: Panel A

divides the mathematics sample into quartiles by diversity. Column (1) is the most diverse, and col-

umn (4) contains the least diverse classrooms. Notice that columns (1)-(3) have similar estimates

for the Ethnicity network, but column (4) is much smaller. Comparing column (1) to column (4) we

see a drop from 0.224 to 0.153 (38%). This pattern is consistent in Panel B, for reading. Columns

(1)-(3) have similar estimates of the Ethnicity peer effect, but the estimate in column (4) is starkly

different. Again comparing columns (1) and (4) we see a drop from 0.128 to 0.058 (75%).

There may be two potential mechanisms at play, which we discuss with an example of two

groups for simplicity: a majority and minority. If the two groups are equal sized, there is no

majority, and diversity is maximized. This is analogous to column (1) in Table 7. On the other

hand, column (4) occurs when the minority group is quite small, so that there are few to no peers

from their group. In this case, the majority group is large enough that their group identify is

largely irrelevant as a tool for subdividing the classroom and selecting friends. However, minority

students may be isolated from the classroom and their group peer effect is near-zero in such a
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situation. These two channels are likely to lead to the full drop that we observe: majority students

find ethnicity to be a less influential network when most of their peers share the same ethnicity,35

and minority students become isolated. Despite the difference in context, these results may help

to explain why Arcidiacono and Nicholson (2005) finds peer effects along gender lines but not

ethnicity lines in US medical schools, as medical schools are known to lack diversity (Lett et al.,

2019).

It is important to note that this exploration is correlational.36 We have not randomly assigned

students into diverse classrooms, and school diversity is likely tied to neighborhood choices and

other endogenous factors. Nonetheless, these results are striking and suggest that Ethnicity (and

possibly other networks) retain their importance over most of the distribution, but drop off in im-

portance when diversity is low. There are two questions this exercises raises which are beyond the

scope of this paper. The first is whether unrelated networks are substitutes for one another. That

is, if one network (ex: Ethnicity) is not diverse, does the importance of another group (ex: Gender)

increase? 37 We see related behavior in Carrell et al. (2013), where USAFA students from top and

bottom ability quartiles were placed in squadrons without the middle performers. This decrease in

diversity lead to more within-squadron segregation along ability lines. Second, do different groups

within the network place differing values on membership to their group? Hsieh and Lin (2017)

finds that middle and high school females are more affected by their peers than their male coun-

terparts. Similarly, they find that white students are more affected by their peers than other racial

groups.

It is useful to look at the story told by Table 5. In Table 5, we see that primary Language spoken

at home is much more important in Queens - the borough that has the highest proportion of non-
35This story is consistent with the findings of Mayer and Puller (2008). They find that minority students in particular

are more likely to make connections with other minorities at their university. This effect is larger when the minority
group makes up a smaller portion of the student body.

36That said, we see some similar patterns to those presented here when we split by borough, which can be thought
of as causal (attending a school outside a student’s borough of residence is very rare).

37The results in Table 6 are consistent with the idea that Ethnicity and Gender are substitutes based on above and
below the median diversity level. However, this relationship is less clear in Table 7 when broken into quartiles based
on diversity. The pattern shown in Table 5 is similarly noisy. Further exploration of this question is desirable.

32



English speakers as well as the largest borough in our sample.38 Coupled with the findings in Table

7, the change in importance that we see in primary Language suggests a similar pattern - diversity

matters for network importance.

7 Conclusion

In this paper, we find that shared ethnicity, gender, and language spoken at home networks are im-

portant sources of spillovers for mathematics and reading test scores in NYC elementary schools.

This supports the assumption made by much of the literature that gender and ethnicity networks are

important. When modeled with these characteristics, neighborhood, bus stop, bus route, and coun-

try of birth appear less important for academic peer effects. Even though we find no significance

effect, to our knowledge, this is the first study to explore the importance of bus peers in the class-

room. These findings may increase our understanding of network formation within the classroom

and our ability to predict group behavior after a change in the network.39

In the standard social interaction model, endogenous spillovers mitigate performance gaps by

lifting the performance of low performing students more than the performance of high performing

students. In this paper, we show that if such spillovers work within the boundaries of groups, the

performance gap between students in different groups increases (i.e. increased gender gap or racial

disparity in academic performance). Since ethnicity is an important within-classroom network for

social spillovers, this implies that known performance gaps, such as the racial performance gap,

may be exacerbated even in diverse classroom settings.40

38This is supported further in the Appendix. Table B.2 shows that when we remove connections based on English as
a primary language and students born in the US, the primary Language spoken at home and Country of birth networks
increase in importance. This suggests the language has higher salience when there is diversity in the network - just as
we see in this example in Queens.

39Consider the experiment in Carrell et al., 2013, where the authors implicitly assumed that students would form
friendships in the same manner before and after the policy change. This proved to be a faulty assumption, and success-
ful implementation of policy attempting to harness peer effects in the classroom will likely include an understanding
of how within-classroom networks will change due to the policy change. This involves understanding which groups
may be influential and how influential groups affect the outcome. This paper contributes to our understanding of both
issues.

40This does not imply that classroom diversity is not useful. Our estimates point out that the existence of these
within-classroom partitions may have a negative effect on performance gaps relative to a model without students
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We also show that altering the make-up of the classroom changes the impact of these networks.

In particular, we show that low ethnic diversity is correlated with low impact for that network. This

is likely due to the irrelevance of the network for the majority group, but the negative impact of

isolation on the minority group may also contribute to the effect. Further research is needed to

disentangle these mechanisms. We also provide suggestive evidence that this is true for diversity in

other networks, such as primary language spoken at home.

Lastly, note that the results we present in this paper are multiplicative peer effects which control

for contextual effects. This means that interventions targeting a subset of students in the classroom

may produce spillovers to those not targeted by the intervention. Our results inform which groups

receive the strongest effects of these spillovers in the presence of groups. For example, a program

providing additional mathematics tutoring will produce the strongest spillovers to students sharing

ethnicity with the tutored students; extra tutoring in reading will result in the strongest spillovers

for students sharing either gender or ethnicity. Students who share a primary language spoken at

home will also see important spillovers for both outcomes. This type of information should be

useful for designing optimal interventions not only in education but also across a variety of fields,

and we provide a roadmap for how to utilize demographic data to obtain such useful information.

sorting along these lines, and highlight the importance of facilitating cross-group interaction as a means of mitigating
these gaps.
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Appendix A Simulation Experiments

We conduct two experiments to examine 1) if the NYC elementary school data contains enough

variations in the sizes of demographic groups across classrooms to consistently estimate model

parameters, and 2) if the relative sizes of the estimates of peer effects based on different partitions

reflect their relative importance in friendship formation, when friendship is formed based on ho-

mophily. Specifically, in the first experiment, we simulate datasets using the proposed model and

the empirical moments of the sizes of groups in the NYC school data, and investigate if the model

parameters are consistently estimated from the proposed maximum likelihood estimation. The sec-

ond experiment applies the proposed model to the datasets generated from a standard peer effects

model with a single friendship network where the peer network is formed based on some shared

characteristics. We examine if the proposed model can identify the determinants of the friendship

network in such setting.

For the first experiment, we create C classrooms with classroom sizes randomly drawn from

the empirical distribution of class sizes in the NYC data. Then, we create three partition networks

by randomly assigning a gender, ethnicity and bus ridership to each student in a classroom. The

three networks represent three distinctive network types in terms of the number of related groups

and the level of variation in their sizes. First, the gender network (W1,c) includes only two groups,

so the size of each gender group in a classroom tends to be large,1 and it may not vary much across

classrooms in part due to the common school practice that roughly matches the proportions of male

and female students. This implies identification of gender peer effects may be challenging. Second,

the ethnicity network (W2,c), generated based on the empirical distributions of the four largest

ethnic groups in the NYC data, contains a moderate number of groups, and their size variations are

relatively large in Table 1 in the main text. So, this type of network may not pose the identification

difficulty that the gender network may have. The last network, bus rider network (W3,c) is very

sparse as only about 10% of students are bus riders and there may be several bus routes that further
1As discussed in Section 4.2, endogenous and exogenous peer effects may be weakly identified when the average

group size is large relative to the number of groups.
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partition the riders.2 It is well known that this type of network sparsity or exclusion restrictions help

identification of peer effects, which is well born out in our simulation results. Regressors include

dummies created from the gender, ethnicity and bus ridership variables, a continuous variable, zic ⇠

N(0, 1), and its interactions with weights matrices for exogenous peer effects. The errors are drawn

independently and identically from N(0, 1). With all variables generated, the outcome variables

are generated from the reduced form of equation (1) in the main text for each classroom. This

exercise includes thirteen parameters in total: three endogenous peer effects (�), three exogenous

peer effects (✓), and six coefficients for the rest of the regressors and the variance of the error (�

and �
2). We set �1 = �2 = �3 = 0.1, and the rest of the parameter values to be one. We simulate

1,000 times for each C = {50, 100, 500}.

Table A.1: Experiment 1

�̂1 �̂2 �̂3 ✓̂1 ✓̂2 ✓̂3 �̂1 �̂
2

C=50 Bias 0.025 0.008 0.003 -0.043 -0.017 0.001 -0.026 0.012
SD 0.076 0.042 0.048 0.212 0.111 0.198 0.105 0.040

C=100 Bias 0.012 0.004 0.001 -0.025 -0.006 0.002 -0.017 0.005
SD 0.056 0.029 0.030 0.149 0.075 0.091 0.076 0.028

C=500 Bias 0.001 0.000 0.000 -0.001 0.000 0.001 -0.002 0.000
SD 0.016 0.009 0.009 0.045 0.024 0.029 0.023 0.009

Table A.1 reports the bias and standard deviation (SD) of the estimates over 1,000 replications

for each case.3 Overall, both bias and variance of the estimates decrease fast as C increases, and the

bias is considerably smaller than the standard deviation, confirming that the empirical distributions

of the sizes of groups in the NYC data provide sufficient variations for the consistent estimation of

the model parameters. Particularly, the biases and variances of �̂1 and ✓̂1 (i.e. gender- endogenous

and exogenous peer effects) are always larger than that of the others peer effects estimators as we

expected before.

For the second experiment, we simulate a friendship network, Wc, for each classroom us-

ing a network formation model frequently used in the literature (e.g. Goldsmith-Pinkham and Im-
2As mentioned in the main text, when constructing bus route or stop network for our empirical application, those

who are not bus riders are ignored, that is, those are isolated from these networks.
3�1 is coefficient on zic and the results on �i for i = 2, ..., 6 are omitted to save space.
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bens, 2013) such that [W⇤
c ]ij = w

⇤
ijc where w

⇤
ijc = 1 (U c

i (j) > 0) ⇥ 1
�
U

c
j (i) > 0

�
for i 6= j

and w
⇤
ijc = 0 otherwise. U

c
i (j) is the utility for i of forming a link with j and is specified as

U
c
i (j) = ↵G1 (Gic = Gjc) + ↵E1 (Eic = Ejc) + ✏ijc and Ujc(i) similarly defined.4 Gic and Eic

are the gender and ethnicity variables simulated in the first experiment, and ✏ijc ⇠ iid N(0, 1).

Then, Wc is obtained by row-normalizing W⇤
c . The network formation model implies that there

is a higher chance for two students to form a link if they share the same gender or ethnicity. After

including the same set of regressors used in the first experiment, the outcome variable is gen-

erated from the reduced form of equation (1) in the main text where �Wc now substitutes for
PK

k=1 �kWk,c. Then, we apply our partitioned peer effect model with three networks as in the first

experiment to these data to investigate if the peer effects estimates deliver any information about

the determinants of friendship formation.5 We set C = 1, 000, � = 0.3, and simulate 1,000 times

for each (↵G,↵E) 2 {(1, 1), (0.5, 1), (1, 0.5), (0.1, 0.1)} where we vary the parameter values to

change the relative importance of the two factors in network formation.

Table A.2: Experiment 2

(↵G,↵E) �̂1 �̂2 �̂3 ✓̂1 ✓̂2 ✓̂3 �̂1 �̂
2

(1,1) Mean 0.066 0.034 -0.003 0.221 0.108 0.003 0.983 1.081
SD 0.019 0.010 0.010 0.037 0.020 0.031 0.006 0.010

(1,0.5) Mean 0.071 0.018 0.002 0.241 0.056 -0.007 0.987 1.095
SD 0.018 0.010 0.011 0.037 0.019 0.030 0.006 0.010

(0.5,1) Mean 0.032 0.041 -0.002 0.132 0.129 -0.004 0.990 1.116
SD 0.019 0.010 0.011 0.038 0.019 0.030 0.006 0.010

(0.1,0.1) Mean 0.011 0.010 -0.003 0.051 0.015 -0.004 0.999 1.225
SD 0.018 0.010 0.011 0.036 0.019 0.029 0.006 0.011

Table A.2 reports the empirical mean and SD of the estimates over 1,000 simulation draws for

each case. Overall, the relative importance of the factors in friendship formation reflects well on

the relative sizes of �̂k and ✓̂k. In all cases, gender and ethnicity network effects are estimated

to be larger than the bus rider network effect on average, which captures the fact that gender and

ethnicity are the determinants of the friendship network, but the bus ridership is not. Also, gender
4For simplicity, we assume that both students need to agree to form a link.
5Note that the bus ridership variable is not included in the friendship formation model, but the bus ridership network

is included when estimating the outcome model.
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and ethnicity network effects are estimated as small when ↵G or ↵E are small, and vice versa.

Proposing a formal test for determinants of network formation based on peer effects estimates

from our model in this regard is beyond the scope of this paper, but it is clear that the peer effect

estimates of our model may provide important insights into the channels through which students

form friendships.6

6The estimates may better reflect the data generating process of friendship formation if the magnitudes of friendship
links are allowed to differ by similarity between students.
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Appendix B Robustness Checks

B.1 Randomness of classroom assignment

One key assumption for the causal interpretation of educational peer effect models is that classroom

assignment is random (e.g., De Giorgi et al., 2010). While we cannot prove this random assignment,

we provide evidence to support this claim for this sample. For each homophilous peer network we

include in our model, we would like to show that classroom assignment is not a function of the

associated variable. To do this, we consider a series of multinomial logit models of the form:7

P (Classi = c|xikr) = e (↵krc + �krcxikr) /
CX

j=1

e (↵krj + �krjxikr)

We limit the sample for each regression to a single grade (g) in a single school (s) in a single year

(t), which includes 4.44 classrooms on average, and repeat regressions until we cover the whole

sample.8 Classi is a categorical variable for assignment of student i to one of these classrooms, and

xikr is a binary indicator for group r based on demographic characteristic k of student i that we use

as a partition variable in our analysis. For example, if k is the ethnicity network and r is the Hispanic

group, xikr is an indicator of whether student i is Hispanic. We convert demographic indicators with

many sparse categories (i.e. ‘language spoken at home’ and ‘bus route’) to binary indicators (i.e.,

‘English speaker’ and ‘bus rider,’ respectively). The result is a series of estimates (�̃krc) and t-

statistics, capturing the marginal effect and significance of the relevant demographic variable (xikr)

on class assignment. Then, for each school-grade-year we randomly re-assign the students to the

classrooms using a uniform distribution, and re-run the regressions. Using a quantile-quantile plot

of the simulated and actual t-statistics, we compare the distributions of t-statistics. Each dot in the

panels of Figures B.1 and B.2 represents a pair of t-statistics (one actual, the other simulated) for

each grade-school-year. Each panel represent a single demographic indicator and contains a line
7The variables and coefifcients in the equation are subscripted with gst, but it is suppressed for notational simplicity.
8We exclude school-grades for which there is only one classroom available from this process, as there is no assign-

ment decision to be made.
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with a slope of one (a 45 degree line), so deviations in the dot patterns from this line represent a

difference in the significance of the non-randomized and randomized regressions, and (perhaps)

a departure from random assignment to classrooms. Figure B.1 contains the plots for female,

‘English speaker,’ ‘foreign born’ and ‘bus rider,’ while figure B.2 contains plots for Hispanic, black,

white and Asian. All plots appear to support random assignment of students to classrooms.
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B.2 Alternative Specifications

Tables B.1-B.3 modify the specification in Table 3 in the main text to see if our main results are

sensitive to different specifications.9 The general finding of this exercise is that the relative rankings

of the peer effects tend to be robust, while the magnitudes vary slightly. For this reason, the baseline

model reported in Section 5 and Table 3 in the main text is our preferred specification. The baseline

model provides a clear understanding of the relative importance of all partitions of interest, and the

impact of the characteristics these partitions represent on elementary school education test scores.

Table B.1 contains the same model as in Table 3 in the main text (equation 6), but removes the

bus networks. The bus network tends to be sparser then the other networks, and we want to be sure

that this sparseness is not corrupting the other estimated peer effects. For mathematics test scores,

both the ranking and estimates of the peer effects are relatively unchanged without the bus networks.

Only Zip Code increases in both models (although it is never significant in the reading models), and

Ethnicity increases for reading. But these changes are slight and not meaningful. The increase in

Zip Code estimate is consistent with the idea that the bus networks are small geographic networks

and removing them from the model slightly increases the influence of the Zip Code network. Like

most large cities, New York is geographically segregated by ethnicity and income, so it may be

surprising that Ethnicity is not more affected by the removal of the bus networks.10

Next, we further explore the primary Language spoken at home and Country of birth networks.

Nearly 65% of our sample speaks English at home, and over 90% of our sample was born in

the US. We remove connections due to these networks in order to test whether their inclusion is

driving our estimates for these networks. Table B.2 shows estimates of the baseline model with

connections for English language and birth in the US removed. We see that the importance of

Ethnicity declines in both models and the network strength for both primary Language spoken at

home and Country of birth increases. For reading, the increase in the Country of birth network
9Given that Table 3 in the main text showed little impact based on our definition of Neighborhood, we report

estimates using zip codes as they are substantially less computationally intensive.
10It is important to note that only about 25% of the sample is assigned a bus route (compared with 10% for NYC as

a whole). So even as we focus more on the bus, these networks still affect only a portion of our sample - whereas all
students participate in the other networks.
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is enough that it becomes statistically significant (at the 5% level), which was not in the baseline

model. In mathematics, primary Language was already the second most important network, and

we see the estimate increase while the Ethnicity estimate decreases. This suggests that part of what

makes the Ethnicity network so important is shared cultural elements such as language.

Because gender and ethnicity are the most commonly investigated demographic determinants of

educational outcomes in the literature, we run the model with just these two networks for compari-

son. Table B.3 contains the results with only Gender and Ethnicity peer networks. In these models

Ethnicity peers are important for mathematics scores (0.247) with Gender being only mildly im-

portant (0.055), but not for reading scores where Gender (0.150) and Ethnicity (0.129) are much

more similar in importance. This is consistent with the findings in Table 3 in the main text, but we

notice that the inclusion of other networks such as primary Language spoken at home reduces the

effect of Ethnicity, but not Gender. This suggests that Ethnicity is a proxy for some of these other

important networks, but Gender is orthogonal to them.

Table B.1: No Bus Networks

Mathematics Reading

Peer Effects (�k)
Ethnicity 0.221 (0.008) 0.117 (0.009)
Language 0.097 (0.009) 0.052 (0.009)
Gender 0.054 (0.013) 0.150 (0.012)
Zip Code 0.020 (0.009) 0.008 (0.009)
Country 0.008 (0.016) 0.024 (0.017)

Observations (n) 55,598 55,221
About 25% of the sample is assigned a bus, but only a subset of these students share a bus route or
stop with a classmate. We run the baseline model without the bus networks, as we may be concerned
about sparse networks. Models include 20 contextual social effects, constructed using the lag test
score, age, age squared, and FRPL status along with each of the seven networks included in the
model, as well as neighborhood and classroom fixed effects. Hispanic is the omitted reference
group for ethnicity marginal effects.
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Table B.2: Alternate Language and Country Networks

Mathematics Reading

Peer Effects (�k)
Ethnicity 0.208 (0.008) 0.115 (0.009)
Language 0.125 (0.009) 0.053 (0.010)
Gender 0.054 (0.013) 0.150 (0.012)
Zip Code 0.015 (0.009) 0.004 (0.009)
Bus Route 0.007 (0.012) 0.028 (0.012)
Bus Stop 0.019 (0.013) 0.007 (0.013)
Country 0.017 (0.016) 0.038 (0.017)

Observations (n) 55,598 55,221
Models include 28 contextual social effects, constructed using the lag test score, age, age squared,
and FRPL status along with each of the seven networks included in the model, as well as neighbor-
hood and classroom fixed effects. Hispanic is the omitted reference group for ethnicity marginal
effects.

Table B.3: Gender and Ethnicity

Mathematics Reading

Peer Effects (�k)
Ethnicity 0.247 (0.008) 0.129 (0.009)
Gender 0.055 (0.013) 0.150 (0.012)

Observations (n) 55,598 55,221
Models include eight contextual social effects, constructed using the lag test score, age, age
squared, and FRPL status along with each of the seven networks included in the model, as well
as neighborhood and classroom fixed effects. Hispanic is the omitted reference group for ethnicity
marginal effects.
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Appendix C Estimation procedure

Our empirical model is given by

yct =
KX

k=1

�kWk,ctyct +Xct�+
KX

k=1

Wk,ctZct✓k + yc,t�1� + �ct · ◆nct + uct (C.1)

In order to apply a quasi-MLE, we assume that each element in uct is iid(0, �2). To remove

the time varying classroom fixed effects, following Lee et al. (2010), we consider an transforma-

tion that eliminates the classroom fixed effects while maintaining interdependency between the

errors. Let the orthonormal matrix of the with transformation matrix Qct = Inct � ◆nct◆
0
nct

/nct be

[Pct, ◆nct/
p
nct]. The columns in Pct are eigenvectors of Qct corresponding to the eigenvalue one,

such that P0
ct◆nct = 0, P0

ctPct = Inct�1 and PctP
0
ct = Qct. Then, premultiplying equation (C.1) by

P
0
ct yields

yct =
KX

k=1

�kWk,ctyct +Xct�+
KX

k=1

Wk,ctZct✓k + yc,t�1� + uct (C.2)

where yct = P
0
ctyct and Xct,yc,t�1,Zct, and uct are similarly defined, and Wk,ct = P

0
ctWk,ctPct

for k = 1, ..., K. In equation (C.2), we use the fact P0
ctWk,ct = Wk,ctP

0
ct.

Note that uct ⇠ (0, �2Inct�1). Then, the likelihood function for (C.2) is given by

lnLct(⇤,B, �
2) =� nct � 1

2
ln(2⇡�2) + ln |Sct(⇤)|�

✏̄ct( )
0
✏̄ct( )

2�2
(C.3)

where⇤ = (�1, ...,�K)
0 , B = (�

0
,⇥

0
,�

0
)
0 with⇥ = (✓

0
1, ..., ✓

0
K)

0 , Sct(⇤) = Inct�
PK

k=1 �kWk,ct,

and ✏̄ct( ) = yct �
PK

k=1 �kWk,ctyct �Xct��
PK

k=1 Wk,ctZct✓k � yc,t�1� with  = (⇤,B).

If no one is isolated from any of the networks, following Lee et al. (2010), (C.3) can be written

without Pst as

lnLct(⇤,B, �
2) =� nct � 1

2
ln(2⇡�2)� ln

 
1�

KX

k=1

�k

!
+ ln |Sct(⇤)|�

✏ct( )
0 ·Qct · ✏ct( )
2�2

46



(C.4)

where Sct(⇤) = Inct�
PK

k=1 �kWk,ct, and ✏ct( ) = yct�
PK

k=1 �kWk,ctyct�Xct��
PK

k=1 Wk,ctZct✓k�

yc,t�1�. The parameter space for⇤ needs to be restricted to ensure that |Sct(⇤)| and
⇣
1�

PK
k=1 �k

⌘

are strictly positive for all c and t, so that the likelihood is well defined. |Sct(⇤)| will be strictly

positive when
PK

k=1 |�k| < 1 since our network matrices are row-normalized.

The log-likelihood function for entire sample is simply lnL(⇤,B, �
2) =

PC
c=1

PT
t=1 lnLct(⇤,B, �

2).

To simplify the estimation, we concentrate out B and �
2 in (C.4) using the fact that the QMLE of

B and �
2 given ⇤ are: bB(⇤) = ��1 (⇤) where � =

PC
c=1

PT
t=1 �

0
ct · Qct · �ct and  (⇤) =

PC
c=1

PT
t=1 �

0
ct ·Qct · µct(⇤) with �ct = [Xct,W1,ctZct, ...,WK,ctZct,yc,t�1] and µct(⇤) = yct �

PK
k=1 �kWk,ctyct, and

b�2(⇤) =
⌥(⇤)� (⇤)

0
��1 (⇤)

PC
c=1

PT
t=1(nct � 1)

. (C.5)

where⌥(⇤) =
PC

c=1

PT
t=1 µct(⇤)

0 ·Qct · µct(⇤).

Then, the concentrated log-likelihood function of ⇤ is

lnL(⇤) =
CX

c=1

TX

t=1

�nct � 1

2
[ln(2⇡)+1]�ln

 
1�

KX

k=1

�k

!
+ln |Sct(⇤)|�

nct � 1

2
ln b�2(⇤) (C.6)

The QMLE of ⇤, b⇤, is the maximizer of (C.6), and the QMLE of B and �
2 are bB(b⇤) and b�2(b⇤),

respectively.
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